Hydrogen Bond Acceptors and Additional Cationic Charges in Methylene Blue Derivatives: Photophysics and Antimicrobial Efficiency
نویسندگان
چکیده
Photodynamic inactivation of bacteria (PIB) by efficient singlet oxygen photosensitizers might be a beneficial alternative to antibiotics in the struggle against multiresistant bacteria. Phenothiazinium dyes belong to the most prominent classes of such sensitizers due to their intense absorption in the red-light region (λ(abs, max) ca. 600-680 nm, ε > 50,000 L mol(-1) cm(-1)), their low toxicity, and their attachment/penetration abilities. Except simple substituents like alkyl or hydroxyalkyl residues, nearly no modifications of the phenothiaziniums have been pursued at the auxochromic sites. By this, the properties of methylene blue derivatives and their fields of application are limited; it remains unclear if their potential antimicrobial efficacy may be enhanced, also to compete with porphyrins. We prepared a set of six mainly novel methylene blue derivatives with the ability of additional hydrogen bonding and/or additional cationic charges to study the substituents' effect on their activity/toxicity profiles and photophysical properties. Direct detection of singlet oxygen was performed at 1270 nm and the singlet oxygen quantum yields were determined. In suspensions with both, gram-positive and gram-negative bacteria, some derivatives were highly active upon illumination to inactivate S. aureus and E. coli up to 7 log10 steps (99.99999%) without inherent toxicities in the nonirradiated state.
منابع مشابه
A novel set of symmetric methylene blue derivatives exhibits effective bacteria photokilling - a structure-response study.
This study focuses on the structure-response relationship of symmetrically substituted phenothiazinium dyes. Four hydrophilic derivatives with the ability of additional hydrogen bonding (, ) or additional electrostatic interaction (, ) were synthesized, photophysically characterized and compared to the parent compound methylene blue (MB, ) and a lipophilic derivative () without additional coord...
متن کاملEffect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite
The aim of this investigation was to study the relationship between activation factors and adsorption of cationic dye, methylene blue MB, by activated bentonite. The adsorption index was investigated as a function of acid type, time and temperature. A commercial bentonite was selected as a starting material and the effect of heat treatment on MB adsorption were determined in a batch setup. Thou...
متن کاملGrowth Response of Single-gene Dwarf Mutants in Maize to Gibberellic Acid.
required to reduce the methylene blue. It is clear that the long lag phase observed when methylene blue was present before all the oxygen was removed is due to an inhibition by methylene blue of the systems of the cell which consume oxygen. Summary. The rates of the exchange reaction and of the reduction of various dyes and other acceptors have been compared in a number of different microorgani...
متن کاملA 1D anionic lanthanide coordination polymer as an adsorbent material for the selective uptake of cationic dyes from aqueous solutions.
A 1D anionic lanthanide coordination polymer {[(CH(3))(2)NH(2)] [(H(2)abtc)(2)Ho(H(2)O)]}n () (H(4)abtc = 3,3',5,5'-azobenzene-tetracarboxylic acid) has been synthesized under hydrothermal reaction conditions. The protonated [(CH(3))(2)NH(2)](+) is generated from decomposed DMA during the reaction, and balances the negative charge of the framework. The as-obtained samples were characterized usi...
متن کاملRemoval of Anionic Brown 14 and Cationic Blue 41 dyes via Fenton Process
Textile wastewater contains a number of dyes which are known to be toxic and carcinogenic. In this study the results show that the Fenton (Fe2+/H2O2) process is an efficient method for the removal of Acid Brown 14 (A.BR14) and Cationic Blue 41 (C.B41) dyes from textile wastewater. In this method, two reagents Fe2+and H2O2 are used and do not require any additional energy. Several experiment...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013